1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
xgbc = XGBClassifier( objective='binary:logistic', eval_metric='auc', n_estimators=100, max_depth=50, learning_rate=0.1 ) xgbc.fit(x_train,y_train) y_pred = xgbc.predict_proba(x_test)[:, 1] threshold=0.5 y_pred = (y_pred >= threshold).astype(int) f1 = f1_score(y_test, y_pred, average='macro') print('F1 = %.8f' % f1)
DT = DecisionTreeClassifier() DT.fit(x_train,y_train) y_pred = DT.predict_proba(x_test)[:, 1] f1 = f1_score(y_test, y_pred, average='macro') print('F1 = %.8f' % f1)
RF=RandomForestClassifier(n_estimators=50) RF.fit(x_train,y_train) y_pred = RF.predict_proba(x_test)[:, 1] threshold=0.5 y_pred = (y_pred >= threshold).astype(int) f1 = f1_score(y_test, y_pred, average='macro') print('F1 = %.8f' % f1)
gbc = GradientBoostingClassifier( n_estimators=10, learning_rate=0.1, max_depth=50 ) gbc.fit(x_train,y_train) y_pred = gbc.predict_proba(x_test)[:, 1] threshold=0.5 y_pred = (y_pred >= threshold).astype(int) f1 = f1_score(y_test, y_pred, average='macro') print('F1 = %.8f' % f1)
hgbc = HistGradientBoostingClassifier( max_iter=20, max_depth=50 ) gbc.fit(x_train,y_train) y_pred = gbc.predict_proba(x_test)[:, 1] threshold=0.5 y_pred = (y_pred >= threshold).astype(int) f1 = f1_score(y_test, y_pred, average='macro') print('F1 = %.8f' % f1)
ada=AdaBoostClassifier( DecisionTreeClassifier(max_depth=50), n_estimators=100, learning_rate=0.01 ) ada.fit(x_train,y_train) y_pred = ada.predict_proba(x_test)[:, 1] threshold=0.5 y_pred = (y_pred >= threshold).astype(int) f1 = f1_score(y_test, y_pred, average='macro') print('F1 = %.8f' % f1)
|